多媒体通信系统(3.2下)

Digital video Video is composed of a series of still-image frames and produces the illusion of movement by quickly displaying frames one after another. The Human Visual System (HVS) accepts anything more than 20 Frames Per Second (fps) as smooth motion. Television and video are usually distinguished. Television is often associated with the concept of broadcast or cable delivery of programs, whereas video allows more user interactivity, such as recording, editing and viewing at a user-selected time.
数字视频 视频是由一系列静止图像画面组成的,这些画面快速地一幅接一幅地显示就产生了运动的幻觉。人类视觉系统(HVS)把任一超过20帧每秒(fps)的运动画面都看作是流畅的。电视和视频通常是有区别的。电视常常与节目的广播、电缆传送等概念相联系,而视频更偏重于与使用者的互动,例如按使用者选择的时间录像、编辑以及观看等。
The biggest challenges posed by digital video are the massive volume of data involved and the need to meet the real-time constraints on retrieval, delivery and display. The solution entails the compromise in the presentation quality and video compression. As for the compromise in the presentation quality, instead of video with full frame, full fidelity and full motion, one may reduce the image size, use less bits to represent colors, or reduce the frame rate. To reduce the massive volume of digital video data, compression techniques with high compression ratios are required. In addition to throwing away the spatial and color similarities of individual images, the temporal redundancies between adjacent video frames are eliminated.
数字视频带来的最大挑战是巨量的数据和要求实时地复现、传输和显示。解决办法必须在表达质量和视频压缩之间进行折衷。作为对表达质量的折衷,取代视频的全帧、全保真度和全运动,一个办法是减小图像大小,用较少的比特表示色彩,或者减小帧速率。为了减小数字视频数据量,需要高压缩比的压缩技术。另外,为了丢弃在每幅图像之间空间和色彩的相似部分,要除去相邻视频画面之间的时间冗余。
Digital audio Sound waves generate air pressure oscillations that stimulate the human auditory system. The human ear is an example of a transducer. It transforms sound waves to signals recognizable by brain neurons. As with other audio transducers, two important considerations are frequency response and dynamic range. Frequency response refers to the range of frequencies that a medium can reproduce accurately. The frequency range of human hearing is between 20 Hz and 20 KHz. Dynamic range describes the spectrum of the softest to the loudest sound-amplitude levels that a medium can reproduce. Human hearing can accommodate a dynamic range greater than a factor of millions. Sound amplitudes are perceived in logarithmic ratio rather than linearly. Humans perceive sounds across the entire range of 120 dB, the upper limit of which will be painful to humans. Sound waves are characterized in terms of frequency (Hz), amplitude (dB) and phase (degree), whereas frequencies and amplitudes are perceived as pitch and loudness, respectively. Pure tone is a sine wave. Sound waves are additive. In general, sounds are represented by a sum of sine waves. Phase refers to the relative delay between two waveforms. Distortion can result from phase shifts.
数字音频 声波产生气压振动刺激人的听觉系统。人耳是一种典型的传感器。它把声波变换为大脑神经元可辨识的信号。就像其它音频传感器一样,必须考虑频率响应和动态范围这两个重要因素。频率响应是指媒介能够正确重现的频率范围。人类听觉的频率范围是在20 Hz与20 KHz之间。动态范围描述媒介能够重现的从最轻微到最响的声音振幅级。人类听觉能够适应的动态范围超过数百万倍。对声音振幅的感知是对数性的而不是线性的。人类感知声音的范围达到120 dB,上限是使人感到疼痛。声波可以用术语频率(Hz)、振幅(dB)和相位(degree)来表征,频率和振幅分别被感知为音调和响度。纯音是正弦波。声波是合成的。一般的,声音表现为多个正弦波的叠加。相位是指两个波形之间的相对延迟。相位变化将造成失真。
Digital audio systems are designed to make use of the range of human hearing. The frequency response of a digital audio system is determined by the sampling rate, which in turn is determined by the Nyquist theorem.
数字音频系统是按照人类听觉范围设计的。数字音频系统的频率响应取决于抽样速率,而抽样速率是由奈奎斯特理论确定的。Example 3.1 The sampling rate of Compact Disk (CD) quality audio is 44.1 KHz. Thus, it can accommodate the highest frequency of human hearing, namely, 20 KHz. Telephone quality sound adopts an 8 KHz sampling rate. This can accommodate the most sensitive frequency of human hearing, up to 4 KHz.
例3.1 CD质量音频的抽样频率是44.1 KHz。因此,它能够满足人类听觉的最高频率,即20 KHz。电话质量的声音采用8 KHz的抽样频率,它能够满足人类听觉最敏感的4 KHz以下的频率。
Digital audio aliasing is introduced when one attempts to record frequencies that exceed half the sampling rate. A solution is to use a low-pass filter to eliminate frequencies higher than the Nyquist rate. The quantization interval, or the difference in value between two adjacent quantization levels, is a function of the number of bits per sample and determines the dynamic range. One bit yields 6 dB of dynamic range. For example, 16 bits audio contributes 96 dB of the dynamic range found in CD-grade audio, which is nearly the dynamic range of human hearing. The quantized samples can be encoded in various formats, such as Pulse Code Modulation (PCM), to be stored or transmitted. Quantization noise occurs when the bit number is too small. Dithering, which adds white noise to the input analog signals, may be used to reduce quantization noise. In addition, a low-pass filter can be employed prior to the digital-to-analog (D/A) stage to smooth the stairstep effect resulting from the combination of a low sampling rate and quantization. Figure 3.1 summarizes the basic steps for processing digital audio signals [3.4].
在录音频率超过抽样频率的一半时,会造成数字音频混叠失真。解决办法是用低通滤波器滤除高于奈奎斯特频率的成分。量化阶距,即两个相邻的量化电平之间的差值,是每个抽样的比特数的函数,它决定了动态范围。一个比特支持6 dB的动态范围。例如,用于CD级音频的16比特音频提供96 dB的动态范围,已经几乎是人类听觉的整个动态范围。量化样本可以用诸如脉冲编码调制(PCM)等各种格式编码、存储或传输。在比特数过少时会产生量化噪声。在输入模拟信号中加入白噪声,即抖动,可以降低量化噪声。另外,在数模转换(D/A)级前用低通滤波器可以平滑因低的抽样频率和量化造成的阶梯效应。图3.1概括了处理数字音频信号的基本步骤[3.4]。
The quality of digital audio is characterized by the sampling rate, the quantization interval and the number of channels. The higher the sampling rate, the more bits per sample and the more channels means the higher the quality of the digital audio and the higher the storage and bandwidth requirements.
数字音频的质量可以用抽样频率、量化电平和声道数来表征。抽样频率越高、每个抽样的比特数越多、声道越多,数字音频的质量越高、所要求的存储和带宽越高。
Example 3.2 A 44.1 KHz sampling rate, 16-bit quantization and stereo audio reception produce CD-quality audio, but require a bandwidth of 44,100x16x2=l.4 Mb/s, Telephone-quality audio, with a sampling rate of 8 KHz, 8-bit quantization and mono audio reception, needs only a data throughput of 8,000x8xl=64 Kb/s. Digital audio compression or a compromise in quality can be applied to reduce the file size.
例3.2 抽样频率为44.1 KHz,16比特量化的立体声接收,产生CD质量的声音,但是需要44,100x16x2=l.4 Mb/s的带宽,电话质量的声音,抽样频率为8 KHz ,8比特量化,单声道接收,需要的数据流量仅为8,000x8xl=64 Kb/s。数字音频压缩以及在质量上的折衷可以用来减小文件大小。
Integrated media systems will only achieve their potential if they are truly integrated in three key ways: integration of content, integration with human users and integration with other media systems. First, such systems must successfully combine digital video and audio, text, animation and graphics and knowledge about such information units and their inter-relationships in real time. Second, they must integrate with the individual user by cooperatively interactive multi- dimensional dynamic interfaces. Third, integrated media systems must connect with other such systems and content-addressable multimedia databases, both logically (information sharing) and physically (information networking, compression and delivery).
集成媒体系统仅能实现它们的潜能,如果它们真的在三个关键方式上集成:内容集成、使用者集成以及与其它媒体系统集成。首先,这样的系统必须成功地集成数字视频和音频、文本、动画以及图形,还有关于这些信息单元以及它们之间的关系的实时的消息。其次,它们必须通过协同的多维动态接口与各个使用者集成。第三,集成媒体系统必须与其它类似系统以及目录可寻址的多媒体数据库,在逻辑上(信息共享)和物理上(信息联网、压缩和传输)连接。

多媒体通信系统(3.2上)

3.2 Digital Media
Digital media take advantage of advances in computer-processing techniques and inherit their strength from digital signals. The following distinguishing features make them superior to the analog media:
 Robustness–The quality of digital media will not degrade as copies are made. They are most stable and more immune to the noises and errors that occur during processing and transmission. Analog signals suffer from signal-path attenuation and generation loss (as copies are made) and are influenced by the characteristics of the medium itself.
 Seamless integration–This involves the integration of different media through digital storage and processing and transmission technologies, regardless of the particular media properties. Therefore, digital media eliminate device dependency in an integrated environment and allow easy data composition of nonlinear editing.
 Reusability and interchangeability–With the development of standards for the common exchange formats, digital media have greater potential to be reused and shared by multiple users.
 Ease of distributed potential–Thousands of copies may be distributed electronically by a simple command.
数字媒体发挥与计算机处理技术的亲缘优势,并继承了数字信号的长处。下述特征是它们比模拟媒体的优越之处:
鲁棒性——数字媒体的质量不会因复制而劣化。对于处理和传输过程中产生的噪声和差错,它们具有最强的稳定性和更不受影响。模拟信号由于信道衰落和复制损耗而受损伤,而且受媒介特性的影响。
无缝集成——这包括不同媒体通过数字存储、处理和传输技术的集成,与各种媒体的性质无关。因此,数字媒体解除了在集成环境里的器件依赖性,轻松实现非线性编辑的数据合成。
可复用性和互换性——随着公共交换格式标准的开发,数字媒体具有更大的让多重用户再生和共享的能力。
易于分配的能力——一条简单的指令就能分配数千拷贝。
Digital image Digital images are captured directly by a digital camera or indirectly by scanning a photograph with a scanner. They are displayed on the screen or printed.
数字图像 数字图像是用数字摄像机直接捕获的,或者使用扫描仪扫描照片间接捕获。它们显示在屏幕上或者打印出来。
Digital images are composed of a collection of pixels that are arranged as a 2D matrix. This 2D or spatial representation is called the image resolution. Each pixel consists of three components: red (R), green (G) and blue (B). On a screen, each component of a pixel corresponds to a phosphor. A phosphor glows when excited by an electron gun. Various combinations of different RGB intensities produce different colors. The number of bits to represent a pixel is called the color depth, which decides the actual number of colors available to represent a pixel. Color depth is in turn determined by the size of the video buffer in the display circuitry.
数字图像是排列为2D矩阵的像素的集合。这种2D或空间表示法叫做图像分辨率。每个像素由三个分量组成:红(R)、绿(G)、蓝(B)。在屏幕上,像素的每一分量对应于一种荧光粉。荧光粉在受到电子枪激发时发光。各种RGB亮度的不同组合产生不同的色彩。代表一个像素的比特数叫做色深度,它决定了可用于表示一个像素的实际色彩数量。反过来,色深度取决于显示电路中视频缓冲器的大小。
The resolution and color depth determine the presentation quality and the size of image storage. The more pixels and the more colors there are means the better the quality and the larger the volume. To reduce the storage requirement, three different approaches can be used:
 Index color–This approach reduces the storage size by using a limited number of bits with a color lookup table (or color palette) to represent a pixel. Dithering can be applied to create additional colors by blending colors from the palette. This is a technique taking advantage of the fact that the human brain perceives the media color when two different colors are adjacent to one another. With palette optimization and color dithering, the range of the overall color available is still considerable, and the storage is reduced.
 Color subsampling–Humans perceive color as brightness, hue and saturation rather than as RGB components. Human vision is more sensitive to variation in the luminance (or brightness) than in the chrominance (or color difference). To take advantage of such differences in the human eye, light can be separated into the luminance and chrominance components instead of the RGB components. The color subsampling approach shrinks the file size by down-sampling the chrominance components, that is, using less bits to represent the chrominance components while having the luminance component unchanged.
 Spatial reduction–This approach, known as data compression, reduces the size by throwing away the spatial redundancy within the images.
分辨率和色深度确定了表达质量和图像存储的大小。像素越多,色彩越多,就意味着更好的质量和更加昂贵。要减小所需的存储,可采用三种途径:
 色彩索引——这种减小存储量的办法是用色彩检索表(或者调色板)来表示像素以限制比特数。抖动可以用于通过在调色板上混合色彩来创造更多的色彩。这种技术利用了这样一种事实:当两种色彩相距很近时人脑感知的是中间色彩。通过优化调色板和色彩抖动,可用色彩总数依然可观,而存储减小了。
 色彩二次抽样——人类对色彩的感知,对亮度、色调和色饱和度要胜于RGB分量。人类视觉对亮度变化比对色度变化更敏感。利用人眼的这种差异,可以把光分为亮度和色度两个分量以代替RGB分量。通过对色度分量降抽样,用较少的比特代表色度分量,亮度分量保持不变,这样,色彩二次抽样技术就缩小了文件大小。
 空间压缩——这种叫做数据压缩,通过丢弃图像中的空间冗余来减小文件。

多媒体通信系统(第3章3.1)

Multimedia Communication Systems
Chapter 3 Multimedia Processing in Communications
Chapter Overview
Multimedia has at its very core the field of signal-processing technology. With the exploding growth of the Internet, the field of multimedia processing in communications is becoming more and more exciting. Although multimedia leverages numerous disciplines, signal processing is the most relevant. Some of the basic concepts, such as spectral analysis, sampling theory and partial differential equations, have become the fundamental building blocks for numerous applications and, subsequently, have been applied in such diverse areas as transform coding, display technology and neural networks. The diverse signal-processing algorithms, concepts and applications are interconnected and, in numerous instances, appear in various reincarnated forms.
信号处理技术是多媒体的核心基础领域。随着互联网的爆炸性增长,通信中的多媒体处理领域越来越令人兴奋。虽然多媒体领域学科众多,信号处理却是最关键和最具实质性的。一些基本概念,例如频谱分析、抽样理论以及偏微分方程,已经成为许多应用的理论基础,而且在诸如变换编码、显示技术、神经网络等众多领域得到了应用。各种信号处理算法、概念和应用互相关联,而且在很多情况下呈现出不同的形式。
This chapter is organized as follows. First, we present and analyze digital media and signal processing elements. To address the challenges of multimedia signal processing while providing higher interactivity levels with the media and increased capabilities to access a wide range of applications, multimedia signal-processing methods must allow efficient access to processing and retrieval of multimedia content. Then, we review audio and video coding. During the last decade new digital audio and video applications have emerged for network, wireless, and multimedia computing systems and face such constraints as reduced channel bandwidth, limited storage capacity and low cost. New applications have created a demand for high-quality digital audio and video delivery. In response to this need, considerable research has been devoted to the development of algorithms for perceptually transparent coding of high-fidelity multimedia.
本章安排如下。首先,介绍和分析数字媒体和信号处理原理。与媒体更高的互动水平和提高接入各种应用的能力,这些要求对多媒体信号处理提出了挑战,多媒体信号处理方法必须提高访问效率以处理和恢复多媒体内容。然后,我们回顾音频和视频编码。近十年来,尽管面临诸如减小通道带宽、限制存储容量以及降低价格等等约束,新的数字音频和视频应用仍然在网络、无线和多媒体计算机系统中脱颖而出。 已经出现的新应用要求高质量的数字音频和视频传输。为了满足这些需要,已经有相当多的研究投入到高保真度多媒体的感知透明编码(perceptually transparent coding)的开发中来。
Next, we describe a general framework for image copyright protection through digital watermarking. In particular, we present the main features of an efficient watermarking scheme and discuss robustness issues. The watermarking technique that has been proposed is to hide secret information in the signal so as to discourage unauthorized copying or to attest the origin of the media. Data embedding and watermarking algorithms embed text, binary streams, audio, image or video in a host audio, image or video signal. The embedded data is perceptually inaudible or invisible to maintain the quality of the source data.
接着,我们叙述采用数字水印的图像版权保护的一般框架。我们特别介绍了一种高效水印方案的要点,并讨论鲁棒性问题。水印技术已经用于在信号中隐藏秘密信息以防止未经授权的拷贝和证明媒体来源。数据隐藏和水印算法嵌入主体音频、图像以及视频信号的文本、二元码流、音频、图像以及视频中。隐藏的数据对于保持原数据的质量是感觉不到损伤的。
We also review the key attributes of neural processing essential to intelligent multimedia processing. The objective is to show why NNs are a core technology for efficient representation for audio-visual information. Also, we will demonstrate how the adaptive NN technology presents a unified solution to a broad spectrum of multimedia applications (image visualization, tracking of moving objects, subject-based retrieval, face-based indexing and browsing and so forth).
我们还回顾神经处理本质的关键特征智能多媒体处理。为什么NN是有效表示音视频信息的核心技术。我们还将证明自适应的神经网络(NN)技术怎样代表了宽频多媒体应用(图像可视化、移动对象的跟踪、基于主题的恢复、基于外观的检索和浏览等等)的一种统一的解决方案。
Finally, this chapter concludes with a discussion of recent large-scale integration programmable processors designed for multimedia processing, such as real-time compression and decompression of audio and video as well as the next generation of computer graphics. Because the target of these processors is to handle audio and video in real time, the promising capability must be increased compared to that of conventional microprocessors, which were designed to handle mainly texts, figures, tables and photographs. To clarify the advantages of a high-speed multimedia processing capability, we define these chips as multimedia processors. Recent general-purpose microprocessors for workstations and personal computers use special built-in hardware for multimedia processing.
最后,本章以对最近的一种为多媒体处理,例如音频和视频的实时压缩和解压缩,以及下一代计算机图形,而设计的大规模集成可编程处理器的讨论作为结束。由于这种处理器的目标是音频和视频的实时操作,为主要用于处理文本、图形、表格和照片而设计,与传统的微处理器相比必须增加期望容量。为了阐明高速多媒体处理能力的优势,我们对这种用于多媒体处理器的芯片详加说明。最新的原本用于工作站和个人计算机的微处理器为多媒体处理采用了专门的内置硬件。
3.1 Introduction
Multimedia signal processing is more than simply putting together text, audio, images and video. It is the integration and interaction among these different media that creates new systems and new research challenges and opportunities. Although multimedia leverages numerous disciplines, signal processing is the most relevant. Some of the basic concepts, such as spectral analysis, sampling theory and partial differential equation theory, have become the fundamental building blocks for numerous applications and, subsequently, have been reinvented in such diverse areas as transform coding, display technology and NNs. The diverse signal-processing algorithms, concepts and applications are interconnected.
多媒体信号处理并不是简单地把文本、音频、图像和视频放到一起。它是把这些不同的媒体集成和融合为一种新的系统,一种新的挑战和机遇。虽然多媒体领域学科众多,信号处理却是最具实质性的。一些基本概念,例如频谱分析、抽样理论以及偏微分方程理论,已经成为许多应用的理论基础,然后在诸如变换编码、显示技术、神经网络等众多领域得到了重新确立。各种信号处理算法、概念和应用是相互关联的。
The term “multimedia” represents many different concepts. It includes basic elementary components, such as different audio types. These basic components may originate from many diverse sources (individuals or synthetic). For audio, the synthetics may be traditional musical presentation. One may also argue that multimedia is based on the extended visual experience, which includes representation of the real world, as well as its model, through a synthetic representation.
“多媒体”一词代表很多不同的概念。它包括一些基本成分,例如不同的音频类型。这些基本成分可能来自于许多不同的源(单个的或合成的)。对于音频,合成的源或许是传统的音乐演出。有人可能会争辩说多媒体是基于扩展的视觉经验,它包括真实世界的表象,以及通过人造表象对它的模仿。
The “multimedia” technologies have dramatically changed and will keep changing. However, it is erroneous to favor advances simply because the final product is based on better technology.
“多媒体”技术已经发生了戏剧性的变化,而且仍将继续发生变化。因此,一厢情愿地喜欢它是错误的,因为最终的产品总是基于更好的技术。
Multimedia consists of {multimedia data} + { set of instructions } . Multimedia data is informally considered as the collection of the three multimedia data, that is, multisource, multitype and multiformat data [3.1]. The interactions among the multimedia components consist of complex relationships without which multimedia could be a simple set of visual, audio and often data [3.2].
多媒体由+组成。一种非正式的说法是,多媒体数据是以下三种多媒体数据的集合:多源、多类和多格式数据[3.1] 。多媒体成分(不包括简单的由视频、音频和通常的数据组成的多媒体)之间的互作用具有复杂的关系[3.2]。
We define multimedia signal processing as the representation, interpretation, encoding and decoding of multimedia data using signal-processing tools. The goal of multimedia signal processing is effective and efficient access, manipulation, exchange and storage of multimedia content for various multimedia applications [3.3].
我们把多媒体信号处理定义为使用信号处理工具对多媒体数据的表示、解释、编码和解码。多媒体信号处理的目的是使各种多媒体应用有效地访问、交换和存储多媒体内容[3.3]。
The Technical Committee (TC) on MMSP is the youngest TC in the IEEE Signal Processing (SP) society. It took them a long time to raise some questions like the following:
 What is multimedia signal processing all about?
 What impact has signal processing brought to multimedia technologies?
 Where are the multimedia technologies now?
MMSP的技术委员会在IFEEE信号处理学会中是最年轻的技术委员会。它花了很长时间提出了一些象下面这样的问题:
 关于多媒体信号处理的一切是什么?
 信号处理对多媒体技术带来什么冲击?
 现在多媒体技术在什么地方?
Multimedia signal-processing technologies will play major roles in the multimedia-network age. Researchers today working in this area have the privilege of selecting the future direction of MMSP technologies, so what they are doing will deeply influence our future society.
多媒体信号处理技术在多媒体网络时代将扮演主要角色。今天工作在这个领域的研究人员将拥有选择MMSP技术未来方向的特权。

Happy New week

几日秋雨过后,灿烂阳光。身为上班一族,星期一意味着又回到了办公室。有人说工作着是美丽的。但愿本周天蓝、云淡、秋日明媚,爽!;)

我等到你花儿也谢了

好不容易!困扰了我两天的问题,现在明白了。不是这世界变化快,倒是我自己心太急。前两天总也出不来的“欢迎回来!”在今天这次耐心的等待下,终于出现了。:D

教育技术专业实验室建设方案
指导思想
面向二十一世纪的教育技术专业实验室建设,应该在现代教育理论和学习理论的指导下,系统地提供各种类型的现代教育技术软、硬件研究环境,充分发挥现代信息技术的集成性、交互性和共享性,走数字化、网络化的道路,力求信息资源共享,集教学、科研、开发于一体。
教育技术是对学习资源和学习过程进行设计、开发、使用、管理和评价的理论与实践。这就要求教育技术专业实验室能够培养学生掌握音像技术、电子出版技术、计算机辅助教学技术等各种技术手段及其综合集成,并把它们应用于教学过程的开发研究中;熟悉多媒体技术、网络技术等新兴技术的最新研究成果以及各种信息资源的利用和传播方法,以支持教育技术手段的不断革新;能够将各种不同类型的现代教育媒体科学、合理地应用在教学中,加快教育改革的进程和教学质量的提高。
系统总体构建模式
教育技术专业实验室可以划分为十个子实验室,它们相对独立,能单独完成各自的教学、科研任务,又依托服务器和核心交换机而构成一个局域网,最大限度地实现了资源共享。符合教育技术专业实验室建设网络化、数字化的发展趋势。
从系统功能的角度来说,应把多媒体资料馆的建设作为整个系统的核心。它是整个专业乃至整个院校多媒体资料的“源”和“库”,它的馆藏容量应象图书馆一样作为衡量教学和科研能力和水平的重要指标之一。

各实验室的主要教学、科研、产业一体化功能
1.多媒体资料馆
系统主要设备:DV录像机、DVD影碟机、多媒体计算机、视音频采集卡、刻录机、复印打印扫描多功能一体机、交换机、服务器、磁盘阵列、磁带库、光盘库等。
系统应完成的主要教学、科研功能:多媒体素材的采集;文字、图片、视频、音频、动画等多媒体信息资料的分类保存;自制多媒体CAI课件的存档;馆藏和网上多媒体信息资源的检索;卫星电视信号的收录等。多媒体资料馆的建设,实现了专业图书馆的电子化、多媒体化,为教学、科研提供可靠、丰富的多媒体信息资料。
2.音响技术实验室
系统主要设备:DAT录音机、盒式磁带录放卡座、话筒、无线话筒、DVD光碟机、数字调音台、数字音频工作站、合成器、混响器、功放、监听音箱等。
系统应完成的主要教学、科研功能:演播室录音、现场实况录音、文艺演出录音,音频编辑、配音及音效,扩声、音响工程,MIDI及各种电子音乐的制作等。
3. 小型演播厅和虚拟演播室
系统主要设备:灯光及控制系统,照相机、数码相机,摄像机、录像机、切换台、监视器,话筒、无线话筒、调音台、监听耳机、音箱,导播对讲系统,虚拟演播系统。
系统应完成的主要教学、科研功能:室内摄影用光、摄影构图、室内静物摄影;室内摄像用光、运动构图、舞台节目摄制、表演型电视教材摄制、讲授型电视教材摄制;远程教育研究、多媒体CAI课件视音频信号采集等。该实验室的信号数据传输到音像制作实验室,完成影视节目的后期制作。
4.音像制作实验室
系统主要设备:数码照相机、数字摄像机、动画图形工作站、视音频采集卡、激光彩色打印机、非线性编辑机、特技机、数字录像机、监视器、监听音箱、光盘刻录机等。
系统应完成的主要教学、科研功能:数码照相机的使用、数字信号的采集、Photoshop软件的使用、彩色打印机的使用;电脑动画制作、Premiere软件的使用、摄像机的使用、影视后期编辑、非线性编辑机的使用、电视特技制作、光盘刻录、录像带复制等。是学生完成影视教材编导与制作实验、教师制作电视教学片及编辑多媒体CAI课件视频文件的重要实验场所。该实验室的数据信号由交换机实现资源共享。
5.多媒体教室
系统主要设备:P4多媒体计算机、视频展示台、多媒体投影机、音箱、功放、录音机、录像机、DVD播放机等。
系统应完成的主要教学、科研功能:供教育技术专业学生上课使用,让学生在平时上课时,感受媒体课堂教学的作用和功能。同时,也是教师精心组织课堂教学设计的科研场所。
6.计算机室
系统主要设备:服务器、交换机、多媒体计算机。
系统应完成的主要教学、科研功能:教育技术专业学生上机训练,熟练使用计算机,自主学习Excel、Word、Office、Access、Outlook、FrontPage、PowerPoint、Flash、HTML、Premiere、Photoshop、Authorware、3DS MAX、C语言等多媒体CAI课件制作常用计算机软件。也可在该机房内通过网络调取有关信息资料,补充学习专业知识,并能实现远程登录、网上小组互助学习、在线专家答疑等。是教育技术专业学生在校期间掌握技术、技能的主要实验场所。
7.多媒体制作实验室
系统主要设备:扫描仪、采集卡、多媒体计算机、刻录机等。
系统应完成的主要教学、科研功能:Authorware软件的使用,多媒体CAI课件制作,视、音频信号采集,CAI课件的刻录等,是学生深入学习多种模式CAI课件制作的主要场所。该实验室主要依靠交换机共享视音频资源,加工制作课件作品,可以在局域网上发布,也可以刻录成光盘。
8.远程教育技术实验室
系统主要设备:交换机、多媒体计算机等。
系统应完成的主要教学、科研功能:学习多媒体局域网、广域网技术知识,熟悉掌握FrontPage、Flash、HTML等网络课件制作工具,远程教育模式研究,网络CAI课件的运行测试,网络CAI课件的运动环境研究,网络CAI课件设计模式研究等。该实验室以培养学生掌握网络技术、网络课件的设计开发为宗旨。
9.微格教学实验室
系统主要设备:服务器、多媒体计算机、采集卡、摄像头、话筒、无线话筒、录音笔等。
系统应完成的主要教学、科研功能:微格教学实验,视频实时点播,网上微格教学观摩、评课,网络实时双屏监视等。该实验室的监视系统用计算机取代电视机,从而实现了微格教室的数字化、网络化进程。专家可以足不出户在网上点评试教,数千观摩者在终端机上共同受益,其功能已扩展到远程教育领域。
10.光学投影媒体实验室
系统主要设备:多媒体计算机、录像机、DVD影碟机、多媒体投影机、电动屏幕、幻灯机、投影器、投影片制作平台及彩绘工具等。
系统应完成的主要教学、科研功能:常规光学媒体的使用,幻灯片、投影片、投影片的绘制,常规光学媒体的组合,常用光学媒体设备的维护、保养及检修,多媒体CAI课件的测试等实验。
实施步骤
上述方案可按照总体规划一步到位,根据需要分步实施的办法分期建设。
系统设计和设备配备的原则是先进实用、经济合理,社会上已趋于淘汰的东西例如VCD、VHS摄像机、录像机等不能再用。
第一期
首先建设最基本的和急需的网络中心机房(服务器和交换机、电源等)、多媒体教室、计算机室、光学投影媒体实验室、多媒体资料馆和多媒体制作实验室。其中多媒体资料馆和多媒体制作实验室可以先具备基本功能,在后期建设时逐步扩充。
第二期
建设音响技术实验室、远程教育技术实验室、微格教学实验室。
第三期
建设音像制作实验室、小型演播厅和虚拟演播室。其中小型演播厅和虚拟演播室如果仅供本专业教学科研使用,可合为一体建设,还可与微格教学实验室共同使用;若考虑产业开发使用,仍应分开建设。